PUBLIC HEALTH REPORTS

THE PREVALENCE AND TREND OF MENINGOCOCCUS MENINGITIS IN THE UNITED STATES ${ }^{1}$

By R. C. Williams, Assistant Surgeon General, United States Public Health Service

The reports received by the United States Public Health Service from State health officers for the past five years indicate that there has been a progressive increase in the number of cases of meningococcus meningitis that have been recorded. It is true that the actual number of cases is not large when compared with the total population. It is significant, however, that each year there has been an increase over the preceding year and that this rise has continued for five years.

When the prevalence of meningococcus meningitis increased during the period 1915 to 1917, the number of cases rose in Europe before the movement occurred in the United States; but after the World War the number of cases did not rise noticeably in Europe until 1929, and then the increase was not general and the rates were not high.
Incomplete reports for the first three months of 1930 show rates higher than the normal for England and Wales, Scotland, The Netherlands, and Poland, but no figures from Europe have been found indicating a general increase in the prevalence of this disease comparable with that in the United States.

There was an outbreak of meningococcus meningitis early this year in the Anglo-Egyptian Sudan, and reports from the French Protectorate of Morocco show some increase in cases in March. Recent reports from Asia do not show anything unusual in the prevalence of the disease. Canada has reported comparatively few cases, but there has been a slight increase in incidence in Mexico.

The nomenclature relative to meningococcus meningitis has been changed several times, the disease having been variously designated cerebrospinal meningitis, epidemic meningitis, and other similar terms. For this reason earlier figures are not exactly comparable with the later ones.

The death rates from meningococcus meningitis in the registration area of the United States increased gradually from 0.4 per 100,000

[^0]population in 1910 to 3.9 in 1917. Then the rate decreased to 1.0 per 100,000 in 1922, remained stationary at 1.0 to 1.1 until 1926, when it rose to 1.3. In 1927, it was 1.6, and in 1928, 2.6 per 100,000.

The rise in incidence of meningococcus meningitis during the past five years has been accompanied by sharp local outbreaks in various sections of the country. In most of these outbreaks the death rate has been relatively high.

Although there have been considerable differences in various parts of the country in the incidence of meningococcus meningitis, and also wide fluctuations in the numbers of cases reported in the same States

MENINGOCOCCUS MENINGITIS

Graphical representation of the number of cases of meningococcus meningitis reported weekly by State health offlcers to the United States Public Health Service for the years 1926 to 1930
at different times, yet the increase in the prevalence of the disease since 1925 has extended to all sections of the country.

In 1925, the States reporting the highest case rates were Utah, with 11 cases per 100,000 population; Oregon, 10 cases; Nevada, 8 cases, and Wyoming and Washington, each with 4 cases per 100,000.

In 1926, the highest case rates were in Washington, 16 per 100,000; Idaho, 14; Oregon, 11; Montana, 6; California, Nevada, and Wyoming, each with 5 cases per 100,000.

In 1927, the highest case rates for the disease were as follows: Montana, 23 per 100,000; Washington, 13; Wyoming, 12; Wisconsin,

11; Oregon, 10, Idaho, 9; California, Minnesota, Nevada, and North Dakota, 6 per 100,000.

In 1928, Wyoming reported 34 cases per 100,000 population; Montana, 32; Nevada, 22; Colorado, 21; Idaho, 18; North Dakota and Arizona, 16; New York, 11 (New York City had a case rate of 18); and Washington and Missouri, 9 per 100,000.
Reports are not yet complete for 1929. The Mountain States show case rates from 18 to 59 per 100,000 and the Pacific States from 7 to 19. Michigan reported 40 cases per 100,000; North Dakota, 21; Missouri, 18; and New York, 10. New York City had a case rate of about 16 per 100,000 in 1929.

For the United States as a whole during the first two months of the year 1930 more cases of meningococcus meningitis were reported than were reported for the same period of 1929, but early in March thegraph representing the 1930 incidence fell below the graph for last year, although it is still above the incidence for any other recent year.

During the first 22 weeks of 1930, 5,400 cases of meningococcus meningitis were reported to the Public Health Service by 47 States. For the same period of $1929,5,900$ cases were reported, but in 1928 the same States reported only 2,600 cases for the 22 weeks.
In general, the States which reported considerable numbers of cases of meningococcus meningitis during the first five months of last year show decreased prevalence this year, but some States which in prior years have had comparatively few cases, report decided increases in the prevalence of the disease this year.
For the first 22 weeks of 1930, the Pacific States reported 327 cases of meningococcus meningitis, as compared with 667 cases for the corresponding period in 1929. Seven of the Mountain States reported 456 cases this year (for 22 weeks) and 776 cases last year.

Illinois reported 273 cases for the 22 weeks this year and 342 cases last year; Michigan 643 cases this year, 1,085 last year; North Dakota 59 cases and 93 cases, respectively. For Missouri the figures are 305 and 428 cases; New York State, 402 cases in 1930 and 721 in 1929.
The following are some of the States which reported an increase during the first 22 weeks of 1930 over the same period of 1929: Massachusetts, 114 cases this year, 81 cases last year; Indiana, 346 cases this year and only 7 last year. In Indiana the number of cases reported increased suddenly in December, 1929, many of the cases being in Indianapolis.

Tennessee reported 389 cases of meningococcus meningitis for the 22 weeks this year and 37 cases last year; Mississippi, 254 cases as compared with 15 cases last year; and Kentucky, 54 cases this year as compared with 15 in 1929.

The total number of cases of meningococcus meningitis reported throughout the United States for the past five years is as follows:

Year	Cases		Year	Cases
1925	$\begin{aligned} & 1,859 \\ & 2,220 \\ & 3,204 \end{aligned}$			8, 7819,660
1926..				
1927-..-.				

In considering these figures the difficulties of obtaining accurate reports should be borne in mind.

From the standpoint of the public health officer, the control of meningococcus meningitis is an extremely difficult problem. Studies conducted in various sections of the country have failed to produce any new methods of importance. Dr. Sara E. Branham, a worker of the Public Health Service, has recently reported a new meningococcuslike organism (Neisseria flavescens n. sp.) from cases of epidemic meningitis (Public Health Reports, April 18, 1930).

Apparently the most-important measures to be considered in connection with the control and prevention of meningococcus meningitis are: (1) Prompt recognition of cases of the disease; (2) prompt reporting to the health authorities; (3) avoidance of overcrowding; (4) maintenance of high standards of bodily vigor; (5) sterilization of dishes and eating utensils; (6) optimum of fresh air and sunshine for carriers and convalescents.

RECENT PROGRESS IN STUDIES OF UNDULANT FEVER ${ }^{1}$

By H. E. Hasseltine, Surgeon, United States Public Health Service

During the year elapsed since the last meeting of this conference the Public Health Service has continued field investigations of undulant fever along two lines: (1) A reasonably complete epidemiologic investigation in the State of Iowa by Acting Assistant Surgeon A. V. Hardy, in conjunction with the Iowa State Department of Health and the University of Iowa; and (2) a general survey of the disease in various States, with investigations of sufficient individual cases to indicate the various methods of transmission of the disease. This survey has been carried out largely by myself, with excellent cooperation from all State and local health authorities.

Doctor Hardy has studied approximtely 200 cases occurring in Iowa in 1929, which, with those he had previously investigated, makes his total about 375 cases. I have investigated 109 cases in 14 different

[^1]States, some of which are chiefly agricultural States and others that are largely made up of urban communities.

Hardy has collected epidemiologic data on 333 cases and I have done the same on 109 cases. These 442 cases can be divided into 3 main groups: (a) Those without significant exposure to livestock or carcasses (mostly urban cases); (b) rural cases having direct contact with livestock; and (c) urban cases having direct contact with livestock or carcasses.

These may be referred to as the milk, farm, and meat groups.
Group I, the milk group, had 198 cases (103 males, 95 females).
Group II, the farm group, had 200 cases (191 males, 9 females).
Group III, the meat group, had 44 cases (43 males, 1 female).
Age.-Thirteen cases were in children under 10 years of age; all in this age group had no contact with livestock. The decade from 35 to 44 had the greatest number of cases, 118; the age groups between 20 and 50 furnished 296 cases (67 per cent).

Prevalence.-In 1929 the disease was recognized in every State of the Union. Simpson collected a total of 1,305 cases in the United States. An inquiry by means of a questionnaire as to the number of officially reported cases disclosed that 968 were so reported. Accepting these figures it appears that at least 25 per cent of the recognized cases are not reported, while the number that is not recognized can not be estimated with any degree of certainty. The year 1929 is the first year to show anything like a seasonal distribution, the number of reported cases increasing up to September, after which there was a rather sharp drop. Whether this will prove to be the true seasonal variation or not will require several years to establish. It corresponds roughly with the seasonal curve of Malta fever reported by the Royal military and naval authorities.
In the course of this work I have frequently been asked numerous pertinent questions and I believe that these can best be presented in interrogatory form, with such information as I may be able to give in reply.

Is there any evidence that Bangs' bacillus causes undulant fever?

By Bangs' bacillus is meant the so-called bovine strains of Br . melitensis, variety abortus, or, using the name proposed by Huddleson, Br. abortus. This question is frequently raised by a group that claim that undulant fever has not been caused by use of cow's milk. Hardy reports that cultural studies in his Iowa cases have yielded 49 strains of Brucella from 48 patients. Thirty-five of these have been determined to be the porcine variety and 14 have proved to be the bovine strain. From one patient both porcine and bovine strains were isolated. Admitting that these figures represent the true incidence of the organisms, we still have 30 per cent of our culturally proved undulant fever in Iowa due to the bovine organism. Those who have tried the
isolation of Brucella from the blood stream agree that it is far more difficult to grow the bovine organism than the porcine or the caprine strains.

Hardy's investigations of the clinical aspect of cases in Iowa also show that those yielding porcine strains suffered more severely than those yielding bovine strains. This observation has also been suggested in my own work though in only a few instances have successful cultures been made.

A case of undulant fever occurred in the wife of a professional man of this city who lived in Maryland just outside the District. Though the case had recovered at the time my investigation was made, the epidemologic evidence pointed to the family cow as the source. The cow's blood had been tested by the veterinary department of the University of Maryland and found to react positively to the abortus agglutination test. By chance I happened to mention this case to Dr. W. E. Cotton, of the agricultural experiment station at Bethesda, Md., and as a result the cow was purchased by the experiment station. Subsequent cultural studies yielded an organism of the bovine strain from all four quarters of the cow's udder. The cow and her calf both appeared normal, no indication of any disease being discernible. The patient drank very little milk, but used cream freely and made butter from the excess cream. It is possible that she may have received the infection through the skin, but, nevertheless, it was a case due to infected dairy products. If an organism can enter through the skin, it can probably enter through a mucous membrane also.

It has been found that dropping Brucella organisms into the conjunctival sac of animals gives rise to infection as readily as by feeding the cultures.

In connection with the question of pathogenicity of the bovine organism it should be pointed out that there is good evidence that cows become infected with porcine or caprine strains and may transmit these organisms through the milk. In Waycross, Ga., I found that in eight out of nine investigated cases occurring in 1929 the patients had used raw milk from one dairy. From two of these an organism corresponding to the porcine strain was isolated. Neither of these cases had any contact with livestock. All nine cases showed a marked resemblance clinically, and probably all would have yielded the porcine strain if cultural studies had been made on them. The evidence obtained was quite suggestive, if not convincing, that cows had become infected with the porcine organism and they in turn passed the infection along in their milk.

There is also very suggestive evidence that the caprine strain of the organism may be present in cattle of the Northern States.

To us as health officials it makes no difference whether a patient receives a bovine, porcine, or caprine type of Brucella through the raw milk he consumes; the fact that he contracts a preventable disease through such channels is what makes the matter of first importance to us.
Is pasteurization of milk effective in protecting against Brucella infection?
In the January issue of the Health Messenger of the Illinois State Board of Health, it was reported that Arnold had found that $140^{\circ} \mathrm{F}$. for 40 minutes was required to kill certain strains of Br . abortus. He did not give details, and it will be noted that the temperature he employed is 2 to 3 degrees below standard pasteurization temperature. On the other side numerous investigators have reported pasteurization temperature and exposure effective in killing the various strains of Brucella. On the practical side, how many of you State health officers have received reports of undulant fever in the cities of your respective States that have approximately all of their milk supply pasteurized? Though I have made no personal investigations of individual cases in California, Oregon, and Ohio, I have had full access to the records in their health departments and in those States the majority of cases are traced to raw milk. In cities having only a portion of their milk supply pasteurized, undulant fever has picked out the user of raw milk with as much precision as smallpox picks out the unvaccinated.

Two cities, Frederick, Md., and Waycross, Ga., have passed ordinances requiring pasteurization of all milk sold within their limits, undulant fever being the chief, if not the only, factor in bringing about this action. Waycross had only about one-half of its milk pasteurized when undulant fever was first recognized, yet the disease did not develop in those using pasteurized milk exclusively. After nearly two years of observation of these groups, each of which formed a valid control for the other, the health officer had little trouble in convincing city authorities that pasteurization of all milk was necessary to protect the health of the city.

Can undulant fever be contracted by any means of transmission other than milk?

The answer to this is an emphatic affirmative: Contact with infected animals, particularly infected hogs, may and frequently does, result in infection. Usually these cases are severe and sometimes fatal.

Let me cite one case where the contact with hogs seems to be the only explanation. An Italian patient was taken sick about April 1, 1929, and was in hospital until the latter part of August. He worked on a hog-feeding farm near a large eastern city where over 10,000 hogs were maintained on garbage. The establishment maintained about

2,500 brood sows. The patient lived at the hog farm, subsisting in a common mess with other employees, mostly Italians. He had used no fresh milk of any kind for over a year, canned milk being used on their table. The manager of the farm was not aware that hogs suffered from infectious abortion, but on further questioning it developed that some brood sows had been imported from Iowa in the fall of 1928 in order to introduce new breeding blood. Some of these sows aborted or farrowed small and weak pigs. Just how the patient received his infection is not known, but the fact that he worked daily around hogs and used no fresh dairy products seems to warrant considering this a case of infection resulting from contact with hogs. In addition, a culture of the porcine type was isolated from the patient.

Several cases in Kansas City, Kans., which I investigated, were found to use pasteurized milk but worked in a packing plant, most of them working on hog carcasses only.
Is the blood agglutination test reliable?
This question is bound to come up in any scientific group that discusses undulant fever. Instances of conflicting reports on specimens sent to two or more laboratories are numerous and frequently cited by those opposed to the test. I have found a wide variation in the technique of the test in different laboratories. These variations in technique may account for some of the discrepancies. The use of a heavy antigen suspension makes the reading of the test easier but reduces the number of positives and the titer obtained. Evans and, later, Hardy have found that the titer varies inversely with the concentration of the antigen; that is, if the antigen be diluted with an equal quantity of salt solution, the agglutination titer will be found one dilution higher than with the less diluted antigen. To obtain comparable results, the reagents used and the technique followed should be comparable.

The significance of agglutination in low titers can not be stated dogmatically. No absolute line can be drawn which will separate the clinical case of undulant fever from certain apparently well individuals whose blood may give agglutination to some degree. It is well known that some cases of undulant fever that have never given agglutination in any dilution higher than 1:80 have been proved by positive blood cultures. On the other hand it seems well established that certain individuals may acquire some agglutinating power as a result of frequent exposure to the infection either by ingestion or contact. Of 72 practicing veterinarians of Illinois, 3 gave complete agglutinations in 1:80, 1:160, and 1:640 dilutions, respectively; 5 others gave complete agglutination in dilutions varying from 1:10 to 1:40; 8 others gave partial agglutination in dilutions varying from
$1: 10$ to $1: 80$. None of these men have a history of a clinically recognized attack of undulant fever.
Therefore, the diagnosis of undulant fever must be made by the attending physician, with the aid of the laboratory, and not by the laboratory man. The careful consideration of the clinical symptoms, together with the laboratory findings, will usually lead to the correct diagnosis.
Is the serological examination of livestock a practicable method of attacking the problem of undulant fever?

I have heard this question discussed by many veterinarians and livestock authorities and their views have been widely divergent. However, a considerable majority of the sound scientific thinkers believe that this procedure gives greater promise of stopping the tremendous loss to the livestock industry caused by infectious abortion than any other known method. It is the only method that has been successful in herds where the eradication of the disease has been attempted. Other methods have been tried with seeming success, but time has proved that they are not permanent.

The procedure consists of the application of the agglutination test to the blood serum of every animal in the herd, and the segregation and ultimate elimination of those reacting positively. Huddleson has devised a rapid agglutination test which may be applied in the field, and veterinarians report that it is sufficiently reliable for practical purposes. The plan must be applied to the herd as a unit and all additions to the herd from outside sources must be required to pass the test. Reacting animals may be removed by selling them for slaughter or by segregation from nonreactors. However, the maintenance of two herds, one infected and one noninfected, is not a paying proposition, and is not usually advised; but it may be desirable in case certain high-blooded stock is found infected. Fitch (2) and his associates have reported that segregation of the two groups of animals on a "no physical contact" plan, even though the two groups are only a few feet apart, has given most encouraging results.

It is probable that less than 1 per cent of infected cows will escape detection by the agglutination test, and these will very likely be found on retests of the herd.
The certified milk producers of California are requiring that ail cows producing milk in certified herds shall be nonreactors to the abortus agglutination test. This requirement will probably be general within a few years. It will go far toward reducing the danger of undulant fever from certified milk. The only precaution that can be added is that of pasteurization of certified milk, which is now being done in a few localities.

The committee on abortion of the United States Livestock Sanitary Association (3) at their annual meeting in December, 1929, stated:

It has been definitely demonstrated that up to the present time the only method which has been clearly shown as satisfactory for the control of this infection is the clean herd on the basis of serological tests. * * * Your committee again wishes to call your attention to the fact that there is no doubt that cases of undulant fever occur in man which are undoubtedly contracted in laboratories, through milk and its products, and through contact with affected cattle and swine. Your committee further wishes to state, however, that in its judgment it has not been definitely found that any one source is the most important method of the transmission of the disease to man.

A similar committee of the United States Veterinary Medical Association made a report substantially the same. The reports of the committees were adopted by their respective associations.

To us as health officials the greatest weakness of the procedure of examination of livestock and the elimination of infected animals, is the length of time it will take to accomplish this gigantic task. For the protection of the health of the people we must rely upon education of those whose occupation subjects them to the hazard to guard against contact infections, and upon pasteurization to prevent milk-borne cases.

As to milk-borne infections the first essential is healthy cows. However, there is no criterion other than serological or cultural tests that will constantly determine the presence of the infection in the animal. Abortion, retained fetal membranes, sterility, and mastitis may suggest its presence; but frequently an infected animal is encountered that shows none of these signs or symptoms. Examination of the milk by ordinary bacteriological methods does not reveal the presence of Brucella therein, as these organisms grow too slowly to appear visible on the plate in 48 hours. Therefore, a milk that has an exceedingly low bacterial count may be heavily contaminated with the organisms of undulant fever. As the organism has its source in the cow's udder, no amount of cleanliness, inspection, sterilization of utensils, etc., will be of any account unless serological test of the animals be included. Pasteurization of the milk renders it safe and takes care not only of undulant fever but of all other communicable diseases transmitted by milk. Therefore, pasteurization must be our sheet anchor in the prevention of milk-borne undulant fever for at least a number of years. Mohler, chief of the Bureau of Animal Industry, says: "Infectious abortion is so widespread and the milk of so many animals is infected that the main dependence for protection against whatever danger there may be from Bact. abortus in milk must be placed in pasteurization which, if properly done, will make the milk safe until the dairymen can eradicate the disease form their herds."

REFERENCES

(1) Evans, Alice C.: Hyg. Lab. Bull., No. 143 (1925).
(2) Fitch, C. P., Boyd, W. L., and Delez, A..L.: Report of experimental work in the control of bovine infectious abortion. Jour. Am. Vet. Med. Assoc., Vol. 75 (U. S. Vol. 28), August, 1929, pp. 219-229.
(3) Report of Committee on Abortion, U. S. Live Stock Sanitary Association. Journ. Am. Vet. Med. Assoc., Vol. 76 (U. S. Vol. 29) pp. 339-341.

DEATH RATES IN A GROUP OF INSURED PERSONS

Rates for Principal Causes of Death for May, 1930

The accompanying table, taken from the Statistical Bulletin for June, 1930, issued by the Metropolitan Life Insurance Co., presents the mortality record of the industrial insurance department of the company for May, 1930, as compared with the preceding month and with the corresponding month of last year. It also gives the cumulative rates for the period January-May for the years 1930 and 1929. Death rates are given for the principal causes of death. These rates are based on a strength of approximately $19,000,000$ insured persons in the United States and Canada.

It is stated that in no preceding year have the winter and spring health conditions, as reflected by the death rates, been as favorable as in 1930. At the end of May the cumulative death rate for this group was 12.3 per cent below that for last year; and three of the five elapsed months-January, March, and May-recorded lower mortality rates than ever before registered for these months.
The May death rate was 8.7 per 1,000 , as compared with 9 for May of last year. While this decline applied to all sections of the United States, among approximately $1,250,000$ Canadian policyholders this year's May mortality rate was slightly higher than in 1929. For both countries, however, the cumulative death rate for the 5-month period January-May shows a marked improvement over the corresponding period of last year.
The Bulletin states:
Tuberculosis continues to be the most outstanding feature of the year's health record. The cumulative death rate at the end of May was at the remarkably low figure of 85 per 100,000, a reduction of 9.4 per cent from that registered for the like period of 1929. On the basis of what has happened in past years, we are justified in expecting that the tuberculosis death rate for the completed year will be at least 8 per cent below that registered for the January to May period.

The death rates for all four of the principal epidemic diseases of childhood have been low during the five elapsed months of 1930. In this group interest attaches chiefly to diphtheria, whose death rate is now running 21.4 per cent below last year's figure, and at a new minimum. The influenza death rate is at about the normal figure prevailing in years not characterized by wide epidemic prevalence of this disease. The mortality from pneumonia has been unusually low for the
winter and spring seasons. Three important conditions-heart disease, cancer, and diabetes-which have had decidedly upward trends for years, show improvement in 1930 to date. The year bids fair to mark a decline in the death rate from cardiac conditions. The decline in the cumulative death rate for diabetes up to the end of May was 7.8 per cent. While this is an encouraging development (with respect to a disease whose death rate has shown a continuous increase for five years) too much significance must not be attached to it. It should be borne in mind that the comparison is with that period of 1929 when a widespread influenza epidemic prevailed in both the United States and Canada. This outbreak hastened the deaths of many diabetics, and the diabetes mortality rate, during the first half of 1929, was higher than ever before experienced during the winter and spring seasons. Developments of the next few months will determine whether or not the current year is destined to record a break in the steadily rising diabetes death rate. The improvement for cancer is very slight and will be wiped out entirely if small increases are recorded during the rest of the year.

A considerable decline in the mortality from puerperal conditions is one of the most favorable developments of the 1930 mortality record to date. In fact, there is good prospect that a new minimum will be established this year. The drop, as compared with the like period of 1929 , amounted to 11.9 per cent.

There have been small increases this year for both suicides and homicides; and while the death rate from accidents, as a group, has declined, that for automobile fatalities has again increased decidedly. There is every prospect that 1930 will be an exceptional year, if not a record year, from the standpoint of public health; but there is no indication that any progress will be made with respect to public safety.

Death rates (annual basis) per 100,000 for principal causes of death, May, 1930
[Industrial department, Metropolitan Life Insurance Co.]

Cause of death	Death rate per 100,000 lives exposed ${ }^{\text {1 }}$				
	$\begin{gathered} \text { May, } \\ 1930 \end{gathered}$	${ }_{1930}^{\text {April, }}$	$\begin{aligned} & \text { May, } \\ & \text { 1929 } \end{aligned}$	Cumulative, January-May	
				1930	1929
	870.2	975.2	900.1	938.1	1,069.5
	1.26.0	1.0	1.5	1.1	1.5 4.3
Measles-..-		1.5 4.1	3.5	4.1 3.6	3.6
Whooping cough	4.45.7	4.4	5.0	4.67.7	
Diphtheria.....		19.8	8.120.3		6.5 9.8
Influenza.	13.9			23.1	83.4
Tuberculosis (all forms)	884.5	90.4	91.6	85.0	93.883.6
Tuberculosis of respiratory sy		78.5	81.076.9	73.9	
Cancer------	73.5 73.0			75.2	76.4
Diabetes mellitus.	18.3	19.6	18.5255.8	20.1	$\begin{array}{r}21.8 \\ \\ \hline 62.3\end{array}$
Cerebral hemorrhage-	143.5	164.2			
Organic diseases of heart			145.0	159.3	168.9
Pneumonia (all forms).	89.1120	118.713.5	81.211.6	110.013.0	136.715.1
Other respiratory diseases					
Diarrhea and enteritis	11.3	11.8	13.9	11.5	13.4
Bright's disease (chronic nephritis)	67.511.5	10.8	70.312.5	71.212	76.5
Puerperal state.					14.3
Suicides.----	10.15.9	10.35.7	8.95.6	9.46.4	8.76.2
Homicides.					
Other external causes (excluding su cides)		52.417.9	56.816.9		56.815.9
Traumatism by automobiles.	56.3 19.0			55.8 17.7	
All other causes.	193.9	215.5	208.0	201.4	209.3

[^2]
COURT DECISION RELATING TO PUBLIC HEALTH

Infection as a result of vaccination held not compensable under

 workmen's compensation act.-(Connecticut Supreme Court of Errors; Smith \boldsymbol{v}. Seamless Rubber Co. et al., 150 A. 110; decided Apr. 30, 1930.) In January, 1928, the city of New Haven was threatened with a smallpox epidemic. The board of health recommended that the residents be vaccinated. The company, by whom the plaintiff was employed, posted a notice that it desired to assist the board of health in its efforts to prevent a smallpox epidemic and offered to vaccinate employees without charge at the company's hospital. The matter of vaccination was entirely optional with the individual employees, and there was no penalty for failure to have it done. The physicians and nurses used the usual, necessary, and proper care. The plaintiff employee was vaccinated and, as a result thereof, contracted an infection of the blood stream, resulting in incapacity.In a proceeding by the employee under the workmen's compensation act the commissioner concluded that, in choosing to be vaccinated, the plaintiff was not fulfilling any duty of her employment or doing any act incidental to it and that her incapacity was not the result of a risk involved in the employment or incident to it or to the conditions under which it was required to be performed. The trial court sustained these conclusions, and the plaintiff appealed to the supreme court. The latter court held that there was no error in the conclusions arrived at. In the opinion it was said, in part:
Where an employer merely permits an employee to perform a particular act, without direction or compulsion of any kind, the purpose and nature of the act becomes of great, often controlling, significance in determining whether an injury suffered while performing it is compensable. If the act is one for the benefit of the employer or for the mutual benefit of both, an injury arising out of it will usually be compensable; on the other hand, if the act being performed is for the exclusive benefit of the employee, so that it is a personal privilege, or is one which the employer permits the employee to undertake for the benefit of some other person or for some cause apart from his own interests, an injury arising out of it will not be compensable.

* * * We can not therefore assume as a necessary inference from the situation disclosed by the record that the opportunity given to the employees of the company to secure vaccination was so extended to them for its benefit rather than as a personal privilege or a means of serving the general good of the community. Lacking this fact, the conclusions of the commissioner can not be held to be violative of any rule of law or unreasonable or illogical. They must therefore stand.

DEATHS DURING WEEK ENDED JULY 5, 1930

Summary of information received by telegraph from industrial insurance companies for the week ended July 5, 1930, and corresponding week of 1989. (From the Weekly Health Index, July 9, 1930, issued by the Bureau of the Census, Department of Commerce)

Week ended	Corresponding
76, 053, 026	74, 490, 653
10, 153	10, 158
7.0	

Deaths from all causes in certain large cities of the United States during the week ended July 5, 1930, infant mortality, annual death rate, and comparison with corresponding week of 1929. (From the Weekly Health Index, July 9, 1930, issued by the Bureau of the Census, Department of Commerce)

City	Week ended July 5, 1830		Annual death rate per 1,000, sponding week,1929	Deaths under 1 year		Infantmortalityrate, weekendedJuly 5,$1930:$
	Total deaths	Death rate ${ }^{1}$		Week ended July 5, 1830	Corresponding week,	
Total (65 cities)	5,925	10.4	10.3	568	556	849
Akron.	35			7	4	64
Albany 4.	24	10.4	13.0	1	3	22
Atlanta White	${ }_{32} 6$	13.9	15.1	15	12	159
White Colored	32 36	(5)	(b)	${ }_{9}^{6}$	7 5	190 143
Baltimore ${ }^{\text {- }}$	158	9.9	9.5	10	11	34
White	117			7	7	30
Colored.	41	(3)	(5)	3	4	49
Birmingham...	88	20.6	17.8	11	8	103
White Colored	46	(5)	(b)	4	5 3 3	${ }_{166}^{62}$
Boston..-	187	12.2	10.5	18	22	166 51
Bridgeport	29			1	1	17
Buffalo.-	121	11.4	11.9	13	13	58
Cambridge.	15	6.2	9.1	2	2	37
Camden.	15	5.8	8.5	1	3	18
Canton	21	9.4	8.9	0	4	0
Chicago ${ }^{\text {- }}$	590	9.7	10.1	59	36	52
Cincinnati	102			4	12	24
Cleveland	151	7.8	7.7	16	9	48
Columbus.	68	11.9	11.0	2	4	20
Dallas White	55	13.2	14.1	7	7	
White-	42			5	7	
Dayton.--	34	${ }_{9} 9.6$	${ }_{11} 1.9$	4	0 3	59
Denver.	78	13.8	13.1	12	6	125
Des Moines.	30	10.3	10.0	2	2	35
Detroit	219	8.3	9.8	30	27	46
Duluth..	16	7.1	7.1	0	1	0
El Paso.	44	19.5	16.8	12	7	
Erie------	17			4	1	85
Fall River ${ }^{\text {4 }}$	24	9.3	8.2	3	0	69
Flint	18	6.3	7.4	3	3	35
Fort Worth.	37	11.3	11.0	3	11	
White--	31			1	9	
Colored Grand Rapids	6			2	2	
Grand Rapids	25	7.9	9.5	2	7	30
Houston----.-. ${ }_{\text {White }}$	142			7	3	
White-	55			3	3	
Indianapolis.	87	(b)	(3)	4	0	
Indianapolis White.	86	11.7	10.9	2	5	15
White Colored	73			2	3	17
Jersey City	15	9.0	6.6	0 6	$\stackrel{2}{8}$	5
Kansas City, Kans.	16	7.1	12.8	1	5	24
White.........-	10			0	4	0
Colored.	6			1	1	217
Kansas City, Mo	90	12.0	13.2	10	13	78
Knoxville.	31	15.3	14.8	5	2	117
White	26			4	2	104
Colored.	5	()	(b)	1	0	247

See footnotes at end of table.

Deaths from all causes in certain large cities of the United States during the week ended July 5, 1930, infant mortality, annual death rate, and comparison with corresponding week of 1989. (From the Weekly Health Index, July 9, 1930, issued by the Bureau of the Census, Department of Commerce)-Continued

City	Weak ended July 5,		Annual rato per 1,000, sponding weak,	$\begin{gathered} \text { Deaths under } 1 \\ \text { year } \end{gathered}$		Infantmortalityrate, weelendedJuly ${ }^{2}$,1930 :
	Total deaths	Death rate 1		Week ended July 1930 5	Corresponding weak, 1929	
Los Angeles...	247			21	11	64
Louisville.--	69	10.9	7.8	5	3	43
White	54			5	1	49
Colored	15	()	()	0	2	0
Lynn.---	15		7.9	1	2	9
Memphis.	91	24.9	17.8	13	8	155
White	43			6	4	110
Colored.	48		() 7	7	4	238
Milwaukee-	79	7.6	8.7	12	15	60
Minneapolis	71	8.1	7.9	6	4	39
Nashrille---	42	15. 7	16.4	7	10	108
White-	24			5	8	103
Colored	18	()	()	2	2	127
New Bedford.	24			1	0	26
New Haven.	81	${ }^{8.6}$	11. 1.	1	1	19
New Orleans.	129	15.7	16.9	14	15	81
White	50	(i)	(0)---	8	${ }^{5}$	135
New York	1,159	10.0	10.1	115	108	135 48
Bronx Borough.	152	8.3	9.5	12	16	28
Brooklyn Borough	395	8.9	8.5	41	47	44
Manhattan Borough	449	13.4	129	46	29	75
Queens Borough	128	7.7	7.8	11	11	32
Richmond Borough.	37	12.8	15.9	5	3	93
Newark, N. J	70	7.7	7.4	5	2	28
Oakland.-	60	11.4	12.9	3	4	36
Oklahoma City	29			5	3	98
Omaha	59	13.8	11.2	7	4	80
Patarson	29	10.4	10.8	1	4	17
Philadelphia	421	10.6	8.1	20	13	30
Pittsburgh	136	10.5	10.2	17	15	62
Portland, Oreg.	62			4	4	49
Providence----	${ }_{43}^{53}$	9.7	7.8 10.5	5	10	46
Richmond.-	43	11.5	10.5	5	${ }^{6}$	74
Colored	15		(9)	3 2	3 3 3	67 87
Rochester.	59	9.4	7.6	3	3	27
St. Louis	170	10.5	13.3	6	24	19
St. Paul.--	34			1	5	10
Salt Lake City ${ }^{\text {- }}$	26	9.8	11.3	5	2	79
San Antonio.	69	16.5	15.1	14	17	
San Diego....	37			2	0	42
San Francisco.	132	11.8	12.7	5	9	34
Schenectady.	12	6.7	8.9	0	2	0
Seattle.....	86	11.7	9.3	4	2	40
Somerville.	16	8.1	6.1	1	1	33
Spokane.	20	9.6	14.3	9	1	235
Springfield, Mass	27	9.4	10.4	4	0	63
Syracuse.-.-	34	8.9	9.4	3	5	37
Tacoma.-.	29	13.7	7.1	0	0	0
Toledo...-	52	8.7	9.2	2	7	18
Trenton...-	27	10.1	10. 5	3	4	56
Utica.	19	9.5	12.0	2	3	57
Washington, D. C.	126	11.9	10.8	9	12	52
Whita	76			4	4	35
Colored.	50	()	()	5	8	89
Waterbury	18			4	4	102
Wilmington, Del	23	9.3	6.9	2	2	45
Worcester.-....	43	11.3	11.1	5	4	65
Yonkers......-	14	6.0 5.7	6.9 8.4	1 3	0	24 47
Youngstown.	19	5.7	8.4	3	2	47

[^3]
PREVALENCE OF DISEASE

No health department, State or local, can effectively prevent or control disease without knowledge of when, where, and under what conditions cases are occurring

UNITED STATES

CURRENT WEEKLY STATE REPORTS

These reports are preliminary, and the figures are subject to change when later returns are received by the State health officers

Reports for Weeks Ended July 5, 1930, and July 6, 1929

Cases of certain communicable diseases reported by telegraph by State health officers for weeks ended July 5, 1930, and July 6, 1929

| | | | |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Cases of certain communicable diseases reported by telegraph by State health officers for weeks ended July 5, 1950, and July 6, 1989-Continued

Division and State	Diphtheria		Infuenza		Measles		Meningococcus meningitis	
	$\begin{array}{\|c} \text { Week } \\ \text { ended } \\ \text { July 5, } \\ 1930 \end{array}$	$\begin{array}{\|c} \text { Week } \\ \text { onded } \\ \text { July 6, } \\ 1929 \end{array}$	$\begin{gathered} \text { Weak } \\ \text { ended } \\ \text { July 5, } \\ 1930 \end{gathered}$	$\begin{aligned} & \text { Week } \\ & \text { onded } \\ & \text { July } 6, \\ & 1929 \end{aligned}$	$\begin{gathered} \text { Week } \\ \text { ended } \\ \text { July 5, } \\ 1930 \end{gathered}$	$\begin{aligned} & \text { Week } \\ & \text { ended } \\ & \text { July 6, } \\ & 1929 \end{aligned}$	$\begin{aligned} & \text { Week } \\ & \text { ended } \\ & \text { July 5, } \\ & \text { 1930 } \end{aligned}$	$\begin{aligned} & \text { Week } \\ & \text { ended } \\ & \text { July } 6, \\ & 1929 \end{aligned}$
	1	4	2	2	24		7	1
Alabama....	3	8	2	5	21	28	1	
Mississippi	4	6					4	0
West South Central States:								
Louisiana.....................	12	10	3	2	7	13	2	2
Oklahoma	3	13	2	20	41	14	2	0
Texas...---	21	15	7	20	51	61	0	
Mountain States:								
Idaho....		1		2	4	8	0	1
W yoming					12	2	0	0
Colorado.	3	3			160	A	0	4
New Mexico	5	2			19		0	0
Arizona.....		2			34	1	2	
Utah ${ }^{2}$ -		2		2	23	4	2	
Washington.		11		1	173	39	0	
California................-.-.-.---- 46								
Division and State	Poliomyelitis		Scarlet fever		Smallpox		Typhoid fever	
	Week ended July 5, 1930	$\begin{gathered} \text { Week } \\ \text { ended } \\ \text { July 6, } \\ \text { 1929 } \end{gathered}$	Week ended July 5, 1930	$\begin{aligned} & \text { Week } \\ & \text { ended } \\ & \text { July 6, } \\ & 1929 \end{aligned}$	Week ended July 5 , 1930	Week ended July 6, 1929	Week ended July 5 , 1930 1930	$\begin{array}{\|c} \text { Week } \\ \text { ended } \\ \text { July 6, } \\ \text { 1929 } \end{array}$
New England States:								
New Hampshire.	1	0	0	1	0	0	0	0
Vermont--	0	0	8	0	0	3	0	0
Massachusetts.	2	1	60	77	0	1.	0	5
Rhode Island.	0	0	4	${ }^{6}$	0	0	0	0
Connecticut.-	0	0	16	18	0	0	1	3
Middle Atlantic States:								
New York.....-			91 49	109	27	0	16	8
New Jersey---	0 1	0	49 197	203	0	0	15	8 18
East North Central States:								
Ohio.....................	4	1	88	70	72	67	10	3
Indiana.	11	1	38	36	101	55	3	3
Illinois...	5	1	126	164	63	76	8	9
Michigan.	0	1	65	162	42	80	4	5
W isconsin.	0	1	43	61	10	21	2	2
Iowa	0	0	8	33	73	55	3	4
Missouri.	1	0	33	11	19	9	9	19
North Dakota.	0	0	1	8	10	3	0	0
South Dakota.	0	0	8	7	14	11	1	1
Nebiaska.	0	0	24	15	39	18	0	0
Kansas.-	0	0	24	24	72	44	6	2
South Atlantic States:								
Delaware Maryland	0	0	0	0	0	0	0	0
District of Columbia	0	1	4	7	0	0	0	19
West Virginia....--	1	0	15	7	2	12	8	11
North Carolina.	3	4	15	13	8	9	29	25
South Carolina	4	1	5	3	1	2	82	79
Georgia.	0	1	1	7	0	0	47	34
Florida	0	0	0	2	0	0	2	13
East South Central States:								20
Tennessee....	2	3	7	7	4	1	52	27
Alabama---	0	2	16	16	0	0	31	37
Mississippi.....---.-.-.-.	0	0	2	6	1	0	38	30

? Week ended Friday.
${ }^{8}$ Figures for 1930 are exclusive of Oklahoma City and Tulsa, and for 1929 are exclusive of Tulsa only.

Cases of certain communicable diseases reportod by telegraph by State healh officers for weeks ended July 6, 19S0, and July 6, 1989-Continued

2 Week ended Friday.
${ }^{3}$ Figures for 1930 are exclusive of Oklahoma City and Tulsa, and for 1929 are exclusive of Tulsa only.

SUMMARY OF MONTHLY REPORTS FROM STATES

The following summary of monthly State reports is published weekly and covers only those States from which reports are received during the current week:

May, 1950
Chicken pox: Cases
Kansas 309
Mississippi 679
Dengue:
Mississippi 8
Dysentery:
Kansas (bacillary) 2
Mississippi (amebic) 104
Mississippi (bacillary) 2,336
Epidermophytosis:
Kansas2
German measles:
Kansas.10
Hookworm disease: Mississippi 345
Impetigo contagiosa:Kansas1
Lethargic encephalitis:
Kansas1
Mumps: Cases
Kansas. 370
Mississippi 801
Ophthalmia neonatorum: Mississippi 14
Paratyphoid fever: Kansas 1
Puerperal septicemia: Mississippi. 25
Rabies in animals:
Mississippi 9
Scabies:
Kansas 8
Septic sore throat:
Kansas 4
Trachoma:
Kansas 2
Mississippi 3
Tularaemia:
Kansas 1

Mumps-Continued. Cases
Indians 11
Wyoming 11
Ophthalmia neonatorum: Arkansas 1
Paratyphoid fever:
Connecticut 1
Rabies in animals: Connecticut 1
Rocky Mountain spotted or tick fever: W yoming 10
Septic sore throat: Connecticut 3
Tetanus:
Connecticut 1
Trachoma:
Arizons. 5
Arkansas 4
Connecticut 1
Wyoming 4
Undulant fever:
Arizona 3
Connecticut 2
Indiana 4
Vincent's angina: W yoming 1
Whooping cough:
Arizona 54
Arkansas 108
Connecticut 172
Indiana 148
Wyoming 9

GENERAL CURRENT SUMMARY AND WEEKLY REPORTS FROM CITIES

The 96 cities reporting cases used in the following table are situated in all parts of the country and have an estimated aggregate population of more than 31,665,000 . The estimated population of the 89 cities reporting deaths is more than $\mathbf{3 0 , 0 7 0 , 0 0 0}$. The estimated expectancy is based on the experience of the last nine years, excluding epidemics.

Weeks ended June 28, 193U, and June 29, 1929

| Cases reported | | 1930 | 1929 | |
| :--- | :--- | ---: | ---: | ---: | ---: |
| Estimated | | | | |
| expectancy | | | | |

City reports for week ended June 28, 1950

The "eetimated expectancy" given for diphtheria, poliomyelitis, scarlet fover, smallpox, and typhoid fover is the result of an attempt to ascertain from previous occurrence the number of cases of the disease under consideration that may be expected to occur during a certain weak in the aboence of epldemics. It is based on reports to the Public Health Service during the past nine years. It is in most instances the median number of cases reported in the corresponding weaks of the preceding years. When the reports include several epidemics, or when for other reasons the median is unsatisfactory, the epidemic periods are excluded, and the estimated expectancy is the mean number of cases reported for the weak during nonepidemic years.

If the reports have not been recaived for the full nine years, data are used for as many years as possible, but no year earlier than 1921 is included. In obtaining the estimated expectancy, the figures are smoothed when necessary to avoid abrupt deviation from the usual trend. For some of the diseases given in the table the available data were not sufficient to make it practicable to compute the estimated expectancy.

City reports for week ended June 28, 1950-Continued

${ }^{1}$ Nonresident.

City reports for week ended June 28, 1950-Continued

City reports for week ended June 28, 1930-Continued

City roports for woek onded Jum 28, 1950-Continued

City reports for week ended June 88, 1950-Continued

City reports for week ended June 28, 1950-Continued

[^4]The following table gives the rates per 100,000 population for 98 cities for the 5 -week period ended June 28, 1930, compared with those for a like period ended June 29, 1929. The population figures used in computing the rates are approximate estimates, authoritative figures for many of the cities not being available. The 98 cities reporting cases have an estimated aggregate population of more than 32,000,000. The 91 cities reporting deaths have more than $30,500,000$ estimated population.

Summary of weekly reports from cities, May 25 to June 28, 1990-Annual rates per 100,000 population, compared with rates for the corresponding period of $1929{ }^{1}$

DIPHTHERIA CASE RATES

	Week ended-									
	$\begin{gathered} \text { May } \\ 31, \\ 1930 \end{gathered}$	$\begin{gathered} \text { June } \\ 1929 \end{gathered}$	$\begin{gathered} \text { June } \\ 7930 \\ 1930 \end{gathered}$	$\begin{gathered} \text { June } \\ 8, \\ 1929 \end{gathered}$	$\begin{gathered} \text { June } \\ 14, \\ 1930 \end{gathered}$	$\begin{aligned} & \text { June } \\ & 15,{ }_{2} \end{aligned}$	$\begin{gathered} \text { June } \\ 21, \\ 1930 \end{gathered}$	$\begin{gathered} \text { June } \\ 22, \\ 1929 \end{gathered}$	$\begin{aligned} & \text { June } \\ & 28, \\ & 1930 \end{aligned}$	$\begin{gathered} \text { June } \\ \text { 29, } \\ 1929 \end{gathered}$
98 cities	77	124	77	110	280	106	${ }^{3} 68$	112	468	110
New England.	51	90	86	72	${ }^{5} 36$	79	35	74	62	94
Middle Atlantic.	71	168	72	148	82	131	81	125	${ }^{6} 64$	144
East North Central	111	155	113	123	129	145	93	165	98	131
West North Central	76	110	51	96	754	65	${ }^{831}$	87	70	85
South Atlantic.....	55	41	49	54	- 40	64	${ }^{\circ} 34$	64	24	34
East South Central.	40	7	13	21	13	41	13	34	13	34
West South Central.	52	57	41	88	86	84	86	65	37	69
Mountain.	43	35	60	61	1035	35	109	28	100	28
Pacific...-....---...-	78	58	76	56	43	34	54	58	64	84

MEASLES CASE RATES

98 cities.	932	659	957	734	${ }^{2} 838$	483	${ }^{8} 667$	423	- 494	267
New England.	1, 426	364	1,462	602	${ }^{5} 1,401$	337	1,048	391	762	211
Middle Atlantic	991	183	1,076	169	1,089	143	818	123	${ }^{6} 628$	99
East North Central.	529	1,597	517	1,827	457	1,152	381	1, 010	334	620
West North Central	514	1,033	412	1,060	${ }^{7} 369$	581	8347	504	264	256
South Atlantic.---	725	298	478	238	${ }^{1} 374$	242	- 387	129	234	137
East South Central.	378	55	418	41	182	41	270	41	256	7
West South Central	486	236	123	400	101	209	82	183	19	156
Mountain.	5,527	252	5, 630	192	103, 386	261	${ }^{10} 2,667$	218	${ }^{101}, 447$	148
Pacific.	1,630	398	2,220	408	1,564	384	1,247	352	931	208

SCARLET FEVER CASE RATES

98 cities	186	269	214	209	${ }^{2} 193$	188	${ }^{1} 145$	148	6 109	112
New England	281	269	230	191	${ }^{5} 200$	204	115	159	124	119
Middle Atlantic.	171	193	196	135	155	129	118	100	69	72
East North Central	142	447	296	321	304	322	229	260	184	191
West North Central	209	179	260	165	7242	110	${ }^{8} 154$	77	97	104
South Atlantic.-	115	273	156	300	- 149	133	${ }^{-1} 100$	73	62	68
East South Central	81	123	108	96	54	75	67	89	61	34
West South Central	15	160	78	76	37	107	105	88	41	42
Mountain.	94	96	240	78	${ }^{10} 123$	70	10202	96	1061	70
Pacific.	83	246	109	270	113	251	85	210	57	164

[^5]Summary of weekly reports from cities, May 85 to June 28, 1980-Annual rates per 100,000 population, compared with rates for the corresponding period of 1929Continued

SMALLPOX CASE RATES

	Week ended-									
	$\begin{gathered} \text { May } \\ 31, \\ 1930 \end{gathered}$	$\begin{gathered} \text { June } \\ 1 \\ 1929 \end{gathered}$	$\begin{gathered} \text { June } \\ 7 \\ 1830 \end{gathered}$	$\begin{gathered} \text { June } \\ 8, \\ 1929 \end{gathered}$	June 14, 1930	$\begin{aligned} & \text { June } \\ & \text { 15, } \\ & \text { 19229 } \end{aligned}$	$\begin{gathered} \text { June } \\ 21, \\ 1930 \end{gathered}$	$\begin{gathered} \text { June } \\ 22, \\ 1929 \end{gathered}$	$\begin{aligned} & \text { June } \\ & 28,{ }_{2} \\ & 1930 \end{aligned}$	June 29, 1929
98 cities.	16	9	21	8	213	16	210	9	${ }^{4} 13$	15
New England.	0	0	0	0	6	0	0	0	0	0
Middle Atlantic.-	1	0	1	0	0	0	0	0	${ }^{\circ} 0$	0
East North Central	13	15	8	17	11	28	8	18	10	38
West North Central	55	15	116	12	${ }^{7} 37$	12	${ }^{31}$	6	51	19
South Atlantic.-.-.	${ }^{9}$	0	4	2	${ }^{1} 8$	4	${ }^{1} 2$	${ }^{6}$	9	2
East South Central.	34	7		14	40	55	20	0	7	7
West South Central	15	19	112	8	22 10	42	26 1035	4	1022	4
Mountain...-.......-	60	52	112	52	1026	44	1035	61	1035	113
Pacific..........-.	57	27	68	14	57	46	43	31	50	14

TYPHOID FEVER CASE RATES

98 cities.-.-------------	7	7	8	8	29	9	88	8	413	12
New England.	11	2	4	7	19	11	0	4	9	9
Middle Atlantic.	3	3	6	5	8	3	4	2	64	7
East North Central.--------	3	3	4	3	4	4	3	4	10	3
West North Central	9	17	9	8	76	17	89	19	13	15
Bouth Atlantic.---.	13	19	20	17	- 15	11	- 19	13	37	30
East South Central	40	34	13	27	27	34	54	55	67	34
West South Central.	22	19	37	27	19	19	26	34	34	34
Mountain...	9	0	0	0	109	9	109	9	1035	52
Pacific..-	9	2	2	12	19	19	7	5	5	19

INFLUENZA DEATH RATES

91 cities.----------------	4	7	5	7	27	6	84	6	43	5
New England.	0	7	0	2	62	7	2	2	0	2
Middle Atlantic....-----------	4	4	4	5	5	4	5	3	62	4
East North Central.........--	4	9	4	6	6	8	4	8	3	4
West North Central.	3	3	12	3	717	9	${ }^{8} 0$	6	0	0
South Atlantic.-.-	4	6	9	7	$\bigcirc 2$	2	- 2	6	5	4
East South Central.	37	0	15	22	15	7	15	15	15	15
West South Central.	4	12	11	16	27	12	8	16	11	4
Mountain.	17	17	9	35	100	0	100	0	100	44
Pacific.-	3	16	3	16	6	6	0	6	3	3

PNEUMONIA DEATH RATES

91 cities.	80	105	86	90	285	86	872	81	468	64
New England	89	106	73	65	680	85	69	56	49	58
Middle Atlantic.	94	113	106	105	101	98	82	89	676	65
East North Central.	54	101	59	96	67	82	53	76	56	69
West North Central.	68	120	130	81	782	54	881	48	86	48
South Atlantic...	82	112	93	67	$\bigcirc 72$	88	- 64	84	68	62
East South Central	110	112	81	60	110	104	133	119	103	75
West South Central	130	66	84	90	107	62	69	82	92	66
Mountain.	77	113	129	61	1088	113	10132	78	1079	104
Pacific.	64	63	40	69	71	60	74	104	55	38

[^6]
FOREIGN AND INSULAR

CANADA

Provinces-Communicable diseases-Week ended June 21, 1930.The Department of Pensions and National Health reports cases of certain communicable diseases in Canada for the week ended June 21, 1930, as follows:

Province	Cerebrospinal fever	$\begin{gathered} \text { Dysen- } \\ \text { tery } \end{gathered}$	Influenza	$\underset{\text { elitis }}{\substack{\text { Poliomy- }}}$	Smallpox	Typhoid fever
Prince Edward Island ${ }^{1}$						
Nova Scotia			3	---------	---.----	
New Brunswick.						3
Quebec-...--	1			1		9 10
Ontario-.-...	6		1		13	10
Saskatchewan	1				10	1
Alberta.				1		
British Columbia.		6				
Total.	8	6	4	2	27	23

${ }_{1}$ No case of any disease included in the table was reported during the week.
Quebec Province-Communicable diseases-Week ended June 28, 1930.-The Bureau of Health of the Province of Quebec, Canada, reports cases of certain communicable diseases for the week ended June 28, 1930, as follows:

Disease	Cases	Disease	Cases
Cerebrospinal meningitis.	1	Mumps.	20
Chicken pox	49	Scarlet fever	7
Diphtheria.	26	Smallpox----	4
Erysipelas..-.	3	Tuberculosis...	32
German measles.	${ }^{6}$	Typhoid fever-	11
Measles	75	Whooping cough.	10

DENMARK

Communicable diseases-April, 1930.-During the month of April, 1930, cases of certain communicable diseases were reported in Denmark as follows:

Disease	Cases	Disease	Cases
Cerebrospinal meningitis.	9	Mumps.	2,234
Chicken pox	62	Paratyphoid fever.	7
Diphtheria and croup.	381	Poliomyelitis_----	3
Erysipelas........-	25	Puerperal fever.	25
German measles.	51	Scarlet fever....	136
Influenza	3,980	Typhoid fever..	8
Lethargic encephalitis.		Undulant fever	35
Measles.	2,431	Whooping cough	1,317

PANAMA CANAL ZONE

Communicable diseases-April-May, 1930.-During the months of April and May, 1930, certain communicable diseases, including imported cases, were reported in the Panama Canal Zone and terminal cities as follows:

PHILIPPINE ISLANDS

Cholera.-During the latter part of May cases of cholera began to occur in the rural districts of the south central part of the Philippine Archipelago, particularly on Negros Island. The rural prevalence of the disease is now rather widespread throughout the involved area, and the principal port of Cebu has become cholera infected. More recently a few scattered cases have occurred adjacent to Manila, following which the chief quarantine officer at Manila has declared a local inter-island quarantine against Cebu. As a precautionary measure, in view of the rural Filipino laborer migration to the Hawaiian Islands and the United States, quarantine was declared on July 7 by the United States against the Philippine Islands, and the quarantine officers at Pacific coast ports, Hawaii, and the Canal Zone have been instructed accordingly.

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER

From medical officers of the Public Health Service, American consuls, International Office of Public Hygiene, Pan American Sanitary Bureau, health section of the League of
Nations, and other sources. The reports contained in the following tables must not be considered as complete or final as regards either the list of countries inoluded or the ígurean
for the particular countries for which reports are given. for the particular countries for which reports are given.
[C indicates cases; D, deaths; P, present]

[C indicates cases; D, deaths; P, present]

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued
[0 indicates cases; D, deaths; P, precent]

heir												--..--	------			--.-...-
Dakahlieh.		8	5			1	---9	3	1	2	5	1				
	1					1										
				1		1										
										6	1	1	1	4	4	2
Port Sa				1					1						1	
Greece (see also table below):			1											1		
	1															
			$408{ }^{1}$				420	281	188							
	3,308	3,940	3,344		229	517	461	271	205							
	1		7		4			4			1	1		2		
	1	1						${ }_{23}^{1}$	$3{ }^{4}$		19	6	7			
	${ }_{27}^{28}$	230	157	12	15	${ }_{9}^{25}$	8							2		
	13 3 3	140	$\begin{array}{r}87 \\ 3 \\ \hline\end{array}$	6	8		$\frac{1}{2}$									
	3	${ }^{7}$			3 2 2	-					--->					
Plague-infected rats... India (Portuguese) \qquad														1		
Indo-China (see also table below):																
				2			1	1		-	2					
		13	13			1		1				1		1		
								$\begin{aligned} & 7 \\ & 3 \end{aligned}$	$\begin{gathered} 11 \\ 6 \end{gathered}$	7 4	$\begin{array}{r} 12 \\ 6 \end{array}$	$\begin{gathered} 12 \\ 7 \end{gathered}$	$\frac{4}{8}$	${ }_{8}^{8}$		10
Japan: Osaka (vicinity of -Plague-infected rats...........-.---					1											
Kwang-Chow-Wan. Madagascar (see also table below):		25					37		20		14	23				
Tamatave \qquad o																
	-..--				${ }_{26}^{41}$	$\begin{gathered} 93 i \\ 12 \\ 12 \end{gathered}$	$\begin{gathered} 3 a_{2}-1 \\ 11 \end{gathered}$	19	22		$\stackrel{12}{8}$	$\stackrel{2}{2}$		-		
		7 7	13					1				$\begin{aligned} & 1 \\ & 1 \end{aligned}$		8		
Plague-infected rats.																

[^7]CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued
[O indicates cases; D, deaths; P, present]

Place	De-cember,	$\begin{gathered} \text { Janu } \\ \text { ary } \\ 1930 \end{gathered}$	$\begin{aligned} & \text { Feb- } \\ & \text { ru- } \\ & \text { ary, } \\ & 1930 \end{aligned}$	$\begin{gathered} \text { March, } \\ 1930 \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Aprill, } \\ 1930^{\circ} \end{gathered}\right.$	$\begin{aligned} & \text { May, } \\ & 1930 \end{aligned}$	Place		$\begin{gathered} \text { Janu- } \\ \text { ary } \\ 1930 \end{gathered}$	$\begin{gathered} \text { Feb- } \\ \text { ru- } \\ \text { ary, } \\ 1930 \end{gathered}$	$\begin{array}{\|c\|} \text { March, } \\ 1930 \end{array}$	$\begin{array}{\|c} \text { Aprill, } \\ \mathbf{1 9 3} \end{array}$	$\begin{gathered} \text { May, } \\ 1930 \end{gathered}$
British East Africa (see also table above): Kenya. \qquad	54	34					Madagascar-Continued. Miarinarivo Province. \qquad O	3		25			
	216	184	109				-	3		25	14		
Ecuador: Guayaquil .-......................- ${ }_{\text {- }}^{\text {D }}$	199	155	99					12	22	7	5		
	6	2	2	2			Tamatave Province.....................-	2	21 3	4	5		
	13	4	2	2	0			2	1				
Ecuador (outside of Guayaquil)....-....----	19	4					Tananarive Province.-...............-. ${ }_{\text {C }}^{\text {C }}$	97	88	110	52		
Greece (see also table above).................. ${ }_{\text {- }}^{\text {d }}$	1	2			1		Senegal: D	98	83	107	52		
Indo-China (see also table above)-.............. ${ }^{\text {C }}$	10	10	30	27	4			5			18	24	13
Madagascar (see also table above)-. ${ }_{\text {D }}^{\text {D }}$	284	282						2			8	12	11
Ambositra Province....................... ${ }^{\text {D }}$	248	258						8				2	52
	${ }_{96} 1$	111	41	20		---.--	Louga 1-................................... ${ }^{\text {D }}$	1		2		${ }^{2}$	42
Antisirabe Province....................... ${ }_{\text {- }}^{\text {C }}$	16	28	22	38								10	27
Itasy Province... ${ }_{\text {D }}^{\text {D }}$	16	25	22	36					8			12	21
	18	31 31		4			Tivaouane 1............................ ${ }_{\text {- }}^{\text {D }}$		1		2	$\stackrel{9}{7}$	135
											8	38	69

[^8]CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued
[C indicates cases; D, deaths; P, present]

1. From Jan. 1 to May 31, 1930, 44 deaths from smallpox were reported in La Paz, Bolivia.
is cases of smallpox were reported Apr. 14, 1930, in Costa Rica outside of city of San Jose.
CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued
[C indicates casces; D, deaths; P, present]

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Place} \& \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Dea. } \\
115 \\
1029 \\
\text { Jan. } \\
11 . \\
1930
\end{gathered}
\]} \& \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{J} \mathrm{an} . \\
12 \\
\text { Feb. } \\
8.0 \\
\hline 930
\end{gathered}
\]} \& \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Feb. } \\
9 . \\
\text { Mar. } \\
8 . \\
\hline 930
\end{gathered}
\]} \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& \text { Mar. } \\
\& \frac{2 \mathrm{pr} .}{} \\
\& \text { Apr. } \\
\& 1930
\end{aligned}
\]} \& \multicolumn{12}{|l|}{Weok ended-} \\
\hline \& \& \& \& \& \multicolumn{3}{|l|}{Aprli, 1830} \& \multicolumn{5}{|l|}{May, 1930} \& \multicolumn{4}{|l|}{June, 1980} \\
\hline \& \& \& \& \& 12 \& 19 \& 23 \& 8 \& 10 \& 17 \& 24 \& 31 \& 7 \& 14 \& 21 \& 28 \\
\hline \& \multirow[t]{13}{*}{} \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& \multirow[t]{9}{*}{\begin{tabular}{r}
28,11 \\
25,186 \\
634 \\
342 \\
164 \\
185 \\
130 \\
234 \\
24 \\
30 \\
9 \\
105 \\
16 \\
16 \\
18 \\
18 \\
\hline
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
3,030 \\
7,710
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\begin{gathered}
-39,329 \\
9,109
\end{gathered}
\]} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 7,788 \\
\& 1,543
\end{aligned}
\]} \& \multirow[t]{2}{*}{\[
\left|\begin{array}{c}
8,385 \\
1,779 \\
1,79
\end{array}\right|
\]} \& \multirow[t]{3}{*}{\[
\left.\begin{array}{|c|c|}
\hline 8,353 \\
1,597 \\
1,597 \\
44
\end{array} \right\rvert\,
\]} \& \multirow[t]{2}{*}{\[
\left|\begin{array}{c}
-7,533^{-} \\
1,449 \\
102
\end{array}\right|
\]} \& \multirow[t]{2}{*}{\[
\left|\begin{array}{c}
-6,59 \\
1,814 \\
1,88
\end{array}\right|
\]} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{--..-} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{-} \& \multirow[t]{2}{*}{-------} \& \multirow[t]{2}{*}{\(\cdots\)} \\
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& \& 314 \& 431 \& 88 \& 78 \& \& \& \& 49 \& 4 \& \(\cdots\) \& --370 \& --85 \& \multirow[t]{2}{*}{23
19
20
20} \& \(\cdots\) \\
\hline \& \& \& \begin{tabular}{l}
399 \\
287 \\
\hline 1
\end{tabular} \& \begin{tabular}{l}
301 \\
305 \\
\hline
\end{tabular} \& 1 \begin{tabular}{l}
153 \\
124 \\
\hline
\end{tabular} \& \({ }^{116}\) \& \& \& 109
94 \& 72 \& 54
40 \& \({ }_{52} 71\) \& 50 \& 87 \& \& \\
\hline \& \& \& 184 \& 291 \& 56 \& 49 \& \({ }_{58}\) \& 20 \& 13 \& 8 \& 7 \& 9 \& 4 \& 1 \& \& \\
\hline \& \& \& \({ }_{38}^{29}\) \& 35
33 \& \({ }_{10}^{3}\) \& 9 \& \({ }_{7}\) \& 2 \& \& \({ }_{6}\) \& 2 \& - \& 2 \& \& 1 \& \\
\hline \& \& \& 16
159 \& \(\begin{array}{r}47 \\ 173 \\ \hline\end{array}\) \& 10
65 \& \({ }_{28}^{38}\) \& \(\stackrel{2}{2}\) \& \& 24 \& 13 \& 15 \& \({ }_{20}^{1}\) \& 2 \& 10 \& 8 \& ----- \\
\hline \& \& \& \({ }_{29}\) \& 178

168 \& ${ }^{6}$ \& 6 \& 5 \& 10 \& 4 \& 5 \& ${ }^{6}$ \& \& 6 \& 3 \& \& -----

\hline \& \& \& 143
40 \& 146
41 \& 10 \& --. \& \& ----- \& ${ }^{27} 4$ \& ${ }^{29}$ \& ${ }_{5}^{20}$ \& ${ }^{13} 8$ \& \& 8 \& 8 \& ---.

\hline Negapatam
\qquad o \& \& - \& 7 \& 10 \& \& 1 \& 1 \& 2 \& 2 \& \& 3 \& 1 \& 1 \& ${ }_{5}^{1}$ \& 1 \&

\hline \& \& \& \& \& \& \& \& \& \& \& 5 \& \& \& 1 \& \&

\hline \& \& 5 \& $\stackrel{9}{1}$ \& 69
18 \& 1 \& \& 2 \& 8 \& 3 \& ${ }_{3}$ \& 1 \& \& \& 1 \& \&

\hline | India (French): |
| :--- |
| Chandernagor \qquad | \& \& 3 \& 11 \& \& 4 \& \& 6 \& \& 6 \& 2 \& 8 \& 8 \& 4 \& \& \&

\hline \& \& 8 \& ${ }^{5}$ \& $\stackrel{2}{2}$ \& \& 9 \& 2 \& \& 6 \& 5 \& 1 \& \& 4 \& \& \&

\hline \& \& ${ }^{3}$ \& 8 \& ${ }^{7}$ \& | 3 |
| :---: |
| 12 | \& 3 \& \& \& 2 \& ${ }_{13}^{1}$ \& 10 \& 8 \& \& 2 \& \&

\hline \& 19 \& 19 \& 40 \& 13 \& 11 \& \& 8 \& \& \& 12 \& 10 \& 7 \& 4 \& \& \&

\hline India (Portuguese)
\qquad \& \& 16 \& \& \& \& \& ${ }_{5}$ \& \& \& \& 2 \& 4 \& \& \& \&

\hline | Indo-China (see also table below): |
| :--- |
| Pnompenh. | \& \& \& \& \& \& \& \& \& 1 \& \& 1 \& 1 \& \& \& \&

\hline \& \& \& \& --... \& \& \& $\frac{1}{4}$ \& \& 1 \& \& \& \& 1 \& \& \&

\hline
\end{tabular}

$\mathrm{Bag}_{\text {Baghad..------- }}^{\mathrm{o}}$	${ }^{18}$															
Mastaililicu.	8	$\overbrace{7}$				${ }_{3}^{22}$			${ }_{2}^{13}$							
Ivory Coast (see table below):																
Mexico (see also table below): Jalisco (State): Guadalajara				$\frac{22}{2}$												
	${ }_{4}^{25}$	$\stackrel{10}{8}$	${ }_{21}^{28}$	${ }^{120}$	${ }_{14}^{36}$	${ }_{8}^{19}$	(20	${ }_{11}^{24}$	${ }_{6}^{30}$	${ }^{15}$		${ }_{6}^{18}$				
Morocco (see table below). Netherlands: Rotterdam....- \qquad																
				${ }_{2}$	i											
											2	,	- i			
Rurtugal: Lisbon Ruma							- ${ }^{2}$	2								
siam Somaliland, British: Boales Spain \square																
Sudan (Anglo-Egyptian) \qquad		4														
Sudan (French) (see table below) Syria (see table below).	${ }^{2}$															
									P	P	P					

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued SMALLPOX-Continued
[C indicates cases; D, deaths; P, present]

Place	$\begin{aligned} & \text { De- } \\ & \text { com- } \\ & \text { ber, } \\ & 1929 \end{aligned}$	$\begin{aligned} & \text { Jan- } \\ & \text { uary } \\ & \text { uary } \end{aligned}$	$\begin{aligned} & \text { Feb- } \\ & \text { ru- } \\ & \text { ary, } \\ & 1930 \end{aligned}$	$\underset{1930}{\text { March, }}$	$\left\lvert\, \begin{gathered} \text { April, } \\ 1030 \end{gathered}\right.$	$\begin{aligned} & \text { May, } \\ & 1930 \end{aligned}$	Place	De-comber, 1920	$\left.\begin{array}{\|c\|} \text { Jan- } \\ \text { uary, } \\ 1930 \end{array} \right\rvert\,$	$\begin{gathered} \text { Feb- } \\ \text { ruy } \\ \text { ary } \\ 1930 \end{gathered}$	$\underset{1930}{\text { March, }}$	April,	Ma7\%
British East Africa (see also table above): Kenys. \qquad	168	12	12	175	174		Morocco Nigeria \qquad	84 293	29	74		10	18
Chosen...		1			5		,	70					
France.. ${ }_{\text {O }}^{\text {d }}$			23	8	1	8		883	215	114		3	16
Mexico: Durango (see also table above).... D	4	12		5	4	4	D	457	66	42			

TYPHUS FEVER
[O indicates cases; D , deaths; P , present]

Place	Dec. 15 Jan. 11, ${ }^{1930}$	$\begin{gathered} \text { Jan. 12- } \\ \text { Feb. } 8, \\ 1930 \end{gathered}$		$\left\lvert\, \begin{gathered} \text { Mar. } 9- \\ \text { Apr. } \mathbf{S}^{\prime} \\ 1030^{\prime} \end{gathered}\right.$	Week ended-												
					April, 1930			May, 1930					June, 1930				5, 1930
					12	19	28	3	10	17	24	31	7	14	21	28	
Algeria: Algiers. Constantine Department \qquad	14	8 4 4	${ }_{5}$	${ }_{11}^{6}$	2	8	2	1	1	2	4	8 2 2 3	11	…-	1		
Bolivia: La Paz. ${ }^{1}$																	
				9				1		5				9		
					1				1				1				
Chile:		1															
China: Shanghai \qquad			1	4	5		20	27									

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued

[^9]
[^0]: ${ }^{1}$ Prosented at the Twenty-eighth Annual Conference of State and Territorial Health Officers with the United States Public Health Service, Washington, D. C., June 19, 1930 (held jointly with the Forty-fifth Annual Conference of State and Provincial Health Authorities of North America).

[^1]: ${ }^{1}$ Presented at the Forty-fifth Annual Conference of State and Provincial Health Authorities of North America, Washington, D. C., June 18, 1930 (held jointly with the Twenty-eighth Annual Conference of State and Territorial Health Officers with the United States Public Health Service).

[^2]: ${ }^{1}$ All figures in this table include infants insured under one year of age and are subject to slight correction, as they are based on provisional estimates of lives exposed to risk.
 ${ }^{2}$ Rate not comparable with that for 1930.

[^3]: ${ }^{1}$ Annual rate per 1,000 population.
 ${ }^{2}$ Deaths under 1 year per 1,000 births. Cities left blank are not in the registration area for births.
 ${ }^{2}$ Data for 73 cities.

 - Deaths for week ended Friday.
 ${ }^{5}$ In the cities for which deaths are shown by color, the colored population in 1920 constituted the following percentages of the total population: Atlanta, 31; Baltimore, 15; Birmingham, 39; Dallas, 15; Fort Worth, 14; Houston, 25; Indianapolis, 11; Kansas City, Kans., 14; Knoxville, 15; Louisville, 17; Memphis, 38; Nashville, 30; New Orleans, 26; Richmond, 32; and Washington, D. C., 25.

[^4]: ${ }^{1}$ Typhus fever, 2 cases: 1 case at Savannah, Ga., and 1 case at Tampa, Fla.
 2 Dengue: 1 case at Mobile, Ala.

[^5]: ${ }^{1}$ The figures given in this table are rates per 100,000 population, annual basis, and not the number of cases reported. Populations used are estimated as of July 1, 1930, and 1929, respectively.
 ${ }_{2}$ Barre, Vt., Omaha, Nebr., Winston-Salem, N. C., and Reno, Nev., not included.
 ${ }^{3}$ Kansas City, Mo., Winston-Salem, N. C., and Reno, Nev., not included.
 ${ }^{4}$ Newark, N. J., and Reno, Nev., not included.
 ${ }^{5}$ Barre, Vt., not included.
 ${ }^{6}$ Newark, N. J., not included.
 ${ }^{7}$ Omaha, Nebr., not included.
 ${ }^{8}$ Kansas City, Mo., not included.

 - Winston-Salem, N. C., not included.

 1 (Reno, Nev., not included.

[^6]: ${ }^{2}$ Barre, Vt., Omaha, Nebr., Winston-Salem, N. C., and Reno, Nev., not included.
 ${ }^{3}$ Kansas City, Mo., Winston-Salem, N. C., and Reno, Nev., not included.
 4 Newark, N. J., and Reno, Nev., not included.

 - Barre, Vt., not included.
 - Newark, N. J., not included.
 $?$ Omaha, Nebr., not included.
 - Kansas City, Mo., not included.
 - Winston-Salem, N. C., not included.
 ${ }^{10}$ Reno, Nev., not included.

[^7]: 1 On Mar. 11,3 deaths from bubonic plague were reported in Andalgala, Catamarca Province, Argentina, since Feb. 5 , 1030.
 21 cases of plague with 8 deaths were reported Jan. 20, 1930, in the State of Sao Paulo, Braxil; 15 of these cases were in the city of Sao Paulo.

[^8]: ${ }^{1}$ Incomplete reports.

[^9]: YFLLOW FEVER
 Cases Case
 Mage, on the Leopoldina Railway, between Rio de Janeiro and Nictheroy,
 Cases
 Apr. 22, 1930 $\begin{array}{r}\text { Brazil-Continued. } \\ \text { Gold Coast, Dec. 21, 1929. } \\ \text { Gold Coast, July 10, 1930. }\end{array}$

